品牌中测
分类房屋检测
数量100000000
种类可靠性鉴定
功能房屋检测单位
在建筑工程中对于各项安全指标的检测是非常必要的,过程同样是重中之重。在进行钢结构检测的过程中,既包括对钢材质量的检测,又需要对紧固件的连接之间进行检测,而取样也特别重要,那么高质量的钢结构检测取样方法有哪些?一、钢材质量检测取样方法
1、钢结构化学成分分析的取样方法:
在钢结构检测过程中,对其化学成分进行分析取样应确保能够代表产品的化学成分的平均值,去除所取样本的表面涂层以及其它方面的污染,尽可能避免有裂纹、疏松等缺陷的地方,并且质量尽可能大一些,如果是粉末状的样品,可以用钻、切或者车、冲的方法取样,也可以用破碎机将小块的材料破碎来进行取样。
2、力学性能检测取样方法:
钢结构检测中的力学性能检测,在取样过程中要避免过热以及加工硬化而造成影响力学性能的现象,取样的位置与方向应该按照规定来确定,确保构件的安全,拉伸、冷弯实验都需要抽取一个试样,而冲击试验需要抽取三个,屈服点与抗拉强度不够是,还应该采取补充拉伸试验。
二、紧固件以及网架节点连接质量检测取样方法
1、钢网架用的高强度螺栓检测取样方法
同一性能的钢结构检测过程中,对于其等级、材料以及炉号、规格和机械加工都应进行取样检测,并且还应对热处理以及表面上的处理工艺的螺栓作为同一个批次进行取样,每批次以及规格应抽取相同的数量。
2、高强度螺栓的连接摩擦面的取样方法
钢结构检测过程中,高强度螺栓之间的连接以及摩擦面在取样时,需要根据螺栓的长度与某个能够代表工程的部位来确定,而且试件的表面应该保持平整,没有油污,孔与板的边缘没有飞边、毛刺,而且所取的芯板的厚度应该能够保证处于一种弹性的变形状况,确保取样检测的准确性。
在进行钢结构检测过程中的取样应遵循以上几种方法,在实际的操作中尽可能选取一些完整的能够反映结构实际状况的样品,包括其化学成分检测、力学性能的检测,甚至钢网架用的高强度螺栓以及其连接面的检测取样等,正确的取样方法可以确保品质好的钢结构检测。
屋面光伏荷载报告——屋顶光伏电站作为分布式光伏发电的主力军之一,备受制造企业青睐,闲置的厂房屋顶再次被利用起来。看到分布式光伏市场的红利,许多居民也蠢蠢欲动,欲偿偿鲜,建立家用屋顶光伏电站。首先查《建筑结构荷载规范》,在有设备的情况下还要自己手算,比如你知道一台机器的重量是一吨,摆放的面积是10平米,那就是1000/10=100kg/m2按重力加速度=10来考虑就是1KN/m2,把这1KN/m2按活荷载考虑,则布置机器的那个房间就应按照规范查到的标准活荷载+1KN/m2来计算,一般民房的楼面活荷载为2KN/m2,所以你计算的活荷载应该按3KN/m2计算 家用屋顶光伏电站建设时,如何把握电站承重能力呢?屋顶能承受太阳能电站设备的重量是怎么计算?这是电站设计之初必须要慎重考虑的问题。
下面我们来举例说明:一个3KW的家用屋顶太阳能电站,需要W的太阳能电池板20块,太阳能电池板的重量为240kg,支架、水泥方砖重量约在210kg,支架占地面积为15平米,以这个标准计算出太阳能电站设备对屋顶的压力为30kg/平米。家用屋顶一般承重都超过30KG,因此,在上面安装光伏板是没有多大问题的。地面光伏电站的参与者主要是的能源投资企业; 分布式光伏则利益相关方众多,不仅有大量不的投资企业,项目往往建设在更不的用电户屋顶上。 要实现“全民光伏”,必须同时进行“全民光伏科普”,否则“不”就是一个大坑。之前,在《如何保障户用光伏项目的收益》提到,在光伏走向千家万户的同时,出现很多极不性现象,以及大量常识性错误。比如,在屋顶光伏晒辣椒和萝卜干。 房屋结构的安全性综合评级
屋面光伏荷载报告——房屋整体性结构检测:
一、 一般规定
1、房屋整体结构的安全性综合评级,应根据其地基基 础和上部承重结构的安全性等级,结合与房屋整体结构安全有关的周边邻近地下工程的影响进行评级。
2、房屋整体结构的安全性以幢为单位,按建筑面积进行计量。
二、等级划分
房屋整体结构的安全性等级,分为a级(安全)房屋、b级(有缺陷)房屋、c级(局部危险)房屋和d级(整体危险)房屋四个等级。
1a级(安全)房屋:整体结构安全可靠,无犮、犱级构件,房屋整体结构在正常荷载作用下可安全使用。
2b级(有缺陷)房屋:整体结构安全,无犱级主要承重构件,房屋整体结构在正常荷载作用下可安全使用。
3c级(局部危险)房屋:部分结构构件承载力不能满足正常使用要求,局部结构出现险情,有局部倒塌破坏的可能。
4d级(整体危险)房屋:承重结构承载力已不能满足正常使用要求,房屋整体出现险情,有随时倒塌破坏的可能。
三、综合评级原则和处理意见
1、房屋整体结构的安全性等级,应根据本标准第7章的地 基基础和上部承重结构的评定结果,按其中较低等级进行评定:
1a级(安全)房屋:上部结构和地基基础均为b级。
2b级(有缺陷)房屋:上部结构为b级楼层,或地基基 础为b级,虽不会造成房屋结构整个或局部破坏,但有缺陷。
3c级(局部危险)房屋:上部结构为b级楼层;或地基 基础为b级。
4d级(整体危险)房屋:上部结构为b级楼层;或地基 基础为b级。
四、房屋整体结构的安全性等级,应结合房屋周边邻近地下工程影响的程度,房屋整体结构的安全性等级评定结果进行修正:
1房屋处于有危房的建筑群中,且直接受到其威胁,应将房屋整体结构的安全等级降一级处理。
2房屋周边邻近土体失稳或地基沉降,直接危及到房屋的自身安全,应将房屋整体结构的安全等级降一级处理。
3处于地下工程的影响Ⅱ区以内,且地基土质较差(为软弱土、或有流砂层),或地下工程施工支护措施不够,应将房屋整体结构的安全等级降一级处理。
各类屋顶光伏系统:
一、倾斜屋顶光伏系统
在倾斜屋顶上安装光伏系统主要有两种形式:一类是在屋顶上安装支架,将光伏组件铺设在支架上。这种系统通常要在屋顶上预埋固定件,如螺栓,并将支架通过连接件与螺栓固定。在安装的过程中要调整好组件的位置以保证整个屋面平整、美观。这类系统在安装时要注意支架与屋顶之间要预留一定的距离,保证良好的空气流动,以此来降低光伏组件的工作温度。在多数情况下,太阳能板会产生大量的热量,太阳能电池板的温度增加一度(以25"C为基准),其效率会相应减少0.3%’0.5%。屋顶与支架间预留一定的空间是很重要的,这样做也可以降低热季节的室内温度,保证室内环境的舒度倾斜屋顶光伏系统安装的第二类方式是:嵌入式结构,即将光伏系统作为建筑物的一部分替代某些建筑构件。这是一种新型结构,在建筑物设计之初就通过设计、计算,预先做好光伏组件的安装构件,并将组件的安装构件与建筑结构设计为一体,建好之后的光伏系统既具备普通建筑屋顶防雨、遮阳的功能,还可以发电。这样做的好处是,光伏系统的成本在建筑设计之初就包含在建材成本里,不需要在建筑物建好之后重新花费安装系统的费用。光伏系统的铺设与建筑主体同步设计、施工、安装,同时投入使用。同时,光伏屋顶系统能更好的利用屋顶面积并且在结构上更安全、可靠。
二、平屋顶(楼顶)光伏系统
在楼顶上安装光伏系统的分类方法亦是相同,一类是将平屋顶作为光伏系统支撑物。在屋顶上要预先安装生根或不生根筑起水泥条或水泥带,并在其中预埋地脚螺栓用于固定组件支架。平屋顶上安装的水泥条或水泥带需安置在建筑物的承重粱上,安装前要预先观测建筑物周围的环境,如风速、、温度等相关参数,通过设计计算出水泥条或水泥带的重量、体积并预埋好地脚螺栓。第二类是将光伏组件作为屋顶材料,如遮阳棚、大楼顶棚、天窗等。这类屋顶结构要求光伏组件既具备建筑材料的功用,又可以发电。对于光伏组件来说要求防雨、抗冲击,若作为建筑物天窗,这就要求光伏组件具备一定的透光性,多采用由双层玻璃构成的组件。若是作为装饰性的建筑物外观材料,还应该具备一定的美观性。与传统的太阳电池使用方式相比,光伏与建筑结合有许多优势:
(1)光伏与建筑结合可以节省一部分建材成本,通过结合,光伏组件可以起到装饰作用,增加建筑物的美观性。(2)可有效的利用阳光照射的空间。如上海市就有2亿m2的屋顶,假设1/10的屋顶用做光伏并网发电,每年可获得电力为34~47亿KWh。
(3)在夏季用电高峰时,光伏系统也正好吸收夏季强烈的太阳,并转换成制冷设备所需要的电能,从而舒缓电力需求高峰时的供需矛盾。光伏建筑一体化将成为21世纪的市场热点,目前制约太阳电池发展的瓶颈仍然是生产成本过高,转换效率低,加上此行业法规政策仍不完善,光伏建筑系统在短期内还难以大规模普及。
屋面光伏荷载报告检测依据的规范:
(1) 《民用建筑可靠性标准》(G292-1999)
(2) 《工业建筑可靠性标准》(G144-2008)
(3) 《建筑抗震标准》(G023-2009)
(4) 《房屋完损等级评定标准》(城住字[84]第678)
(5) 《危险房屋标准》(JGJ125-99,2004年版)
(6) 《城市危险房屋管理规定》(令[2004]第129)
(8) 《建筑结构可靠度设计统一标准》(G068-2001)
(9) 《混凝土结构设计规范》(G010-2002)
(10)《砌体结构设计规范》(G003-2001)
(11)《建筑地基基础设计规范》(G007-2002)
(12)《建筑抗震设计规范》(G011-2010)
(13)《建筑地震破坏等级划分标准》(1990)建抗字第377
(14)《建筑工程抗震设防分类标准》(G223-2008)
(15)《建筑结构荷载规范》(G009-2001,2006年版)
(16)《建筑变形测量规程》(JGJ/T8-2007)
(17)《建筑结构检测技术标准》(GB/750344-2004)
(18)《钻芯法检测混凝土强度技术规程》(CE03:2007)
(19)《回弹仪评定烧结普通砖强度等级的方法》(JC/T796-1999)
屋面光伏荷载报告—有关知识:
屋顶面积直接决定光伏发电项目的容量,是基础的元素,屋面上是否存在附属物,如风楼、风机、附房、女儿墙等,设计时需要避开阴影影响。屋面朝向决定着光伏支架、组件、串列、汇流箱的布置原则,比如东西走向的屋面,背阴面的方阵是否需要设置倾角,组件串联时阴阳两面尽量避免互连,汇流箱及逆变器直流输入输入尽量为同一屋面朝向的阵列。屋面材质基本分为彩钢瓦、陶瓷瓦、钢混等,其中彩钢瓦分为直立锁边型、咬口型(角驰式,呈菱形)型、卡扣型(暗扣式)型、固定件连接(明钉式,梯形凸起)型。前两种需要转接件,后两种需要打孔固定;陶瓷瓦屋面既可以使用转接件,也可以不与屋面固定,利用自重和屋面坡度附着其上;钢混结构屋面一般需要制作支架基础,基础与屋面可以生根也可以不生根,关键考虑屋面防水、抗风载能力、屋面设计荷载等因素。屋面的设计使用寿命决定光伏电站的使用寿命。屋面荷载屋面荷载大体分为荷载和可变荷载。荷载也称恒荷载,指的是结构自重及灰尘荷载等,光伏电站安装在屋面后,需要运营25年,其自重归属于恒荷载,因此,在项目前期考察时,需要着重查看建筑设计说明中恒荷载的设计值,并落实除屋面自重外,是否额外增加其他荷载,如管道、吊置设备、屋面附属物等,并落实恒荷载是否有余量能够安装光伏电站。可变荷载是考虑极限状况下暂时施加于屋面的荷载,分为风荷载、雪荷载、地震荷载、活荷载等,是不可以占用的。情况下,活荷载可以作为分担光伏电站荷载的选项,但不可以占用过多,需要具体分析。
屋面光伏荷载报告——根据工程实际,屋面常规可分为混凝土屋面、瓦屋面和彩钢板屋面。
根据屋面的不同,组件支架与屋面的固定可采用不同的方式。
(1)混凝土屋面。
混凝土屋面常规荷载余量比较大,为获取大发电量,常规采用支架做出一定倾角,太阳能组件固定在支架上。支架构成如图1。
采用倾角安装的太阳能组件,除考虑组件和地区的雪荷载外,风对组件的抗拔力是设计需要考虑的因数。以往的设计中,是采用防水螺栓将支架固定在屋面上。但此做破坏屋面防水,而且需要将原屋面破坏后再修复,成本较高。目前流行的设计是在支架底部设置混凝土砌块,增加自重以抵御风吸力。
(2)瓦屋面。
国内住宅,特别是多层住宅屋面多为瓦屋面。在此屋面布置太阳能板,无法采用支架形式,且瓦屋面考虑排水,自身已有坡度。所以在瓦屋面上,太阳能组件一般沿屋面坡度平铺。瓦片无法固定组件,组件需要采用固定件固定在屋面梁内。
(3)钢屋面。
钢屋面因自身承载力较小,布置太阳能组件首先要复核原屋面荷载是否能满足设计要求。因为荷载问题,太阳能系统的轻量化就是在钢屋面上布置太阳能组件的关键点。组件自身质量已固定,可调整范围不大。组件的固定为减少质量,一般不采用支架,而采用成品的夹具。
屋面光伏荷载报告——结构可靠度分析:
1.影响结构可靠性的因素
影响结构可靠性原因在实际的操作中有很多种,其中主要的原因有两个方面,一方面是结构本身对不同的作用效果的抵抗情况,另一方面是结构对自身所承受到的不同压力来自于外界的作用。施加在结构上的不同的作用会在支座处生成反压力,而且同时会导致结构产生内力、变形、倾覆和滑移。
2.结构的可靠度分析
结构的可靠度指的是什么呢,简单地说就是一个结构所能够承受的时间问题,打个比方说,一个工程一个结构的可靠时间是有规定的,而且这个规定是在特定的范围之内以及特定的条件之下的,并且可以完成的所预定的功能的一个概率,这样来看呢,结构的可靠度是结构可靠性的一个概率度量。也就是说结构的可靠度是对结构的可靠性有一种规定好的概述。在不同的随机原因的影响下,结构完成的预先规定的功能的能力是不能确定的。所以结构的可靠度就只能用概率来表示了,因为结构失去作用是一个非常小的事件,失去作用的概率对结构的可靠度的把握也就显得更加的明显,所以一般在学术上或者学习上大部分的情况都会用概率来表示结构的可靠度。
3.荷载值确定工作中存在的不足
当下我国建筑结构设计荷载值的确定工作展开的过程中,存在的不足主要体现在如下几个方面。首先,设计人员自身的化素养较为欠缺,知识的不够完善使得具体工作在展开时往往不够细致,荷载值的确定也缺乏准确度。其次,对于荷载取值工作的不够完善,缺乏一套健全的监督体系,这也是使得许多工作展开不够细致的原因。此外,现阶段我国用于建筑结构荷载设计的方式仍然较为单一,这也是使得一些工作落实的不够到位的一个原因。
松原分布式光伏荷载检测评估